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A Path to Inversion with GANs

GANs for Inverse Problems
Goal: Use GANs as prior for stochastic inversion

(Year 2: arXiv:1806.03720)

Conditioning of GANs
Goal: Incorporate available data

(Year 1: arXiv:1802.05622)

Generative Adversarial Networks
Goal: Fast image generation based on samples

(Year 1: Phys. Rev. E / TIPM)

Unconditional Prior

Well Data

Physics



● Task: Draw (new) samples from unknown density given a set of samples

● Generative Adversarial Networks (GAN)
○ Two competing Neural Networks

● Variational Autoencoders (VAE)
○ Bayesian Graphical Model of data distribution

● Autoregression (Pixel-CNN)
○ Conditional Distribution on every sample

○ Many More ...

(Deep) Generative Methods

Training Set

Generative 

Model

Latent 

Variables

Samples from Model

Main Problem: How to find the generative model?



(Goodfellow et. al. 2014)
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Generative Adversarial Networks – Toy Example



• Requirements: 

• Training Set of data

• Generator – creates samples G(z)

• Discriminator – evaluates samples

• Cost function: 

• GAN training – two step procedure in supervised way

• Discriminator training step – Generator fixed

• Train on real data samples 

• Train on fake samples

• Generator training step – Discriminator fixed

• Push generator towards “real” images

Generative Adversarial Networks – Training



Credit: @eriklindernoren

GAN Training Example - MNIST
Training Images Generative Model (GAN)



Intergranular Porosity

Moldic Features

Micro-Porosity

Training Time: 8 hours

Generation: 5 sec.

High visual quality

Needs quantitative measures

Unconditional Simulation – Pore Scale

Ketton Training Image GAN generated sample



Characteristic Functionals

captured by GAN model

Largest Error (~20%)

-> Euler Characteristic

Smaller variance of GAN images

Morphological Properties of Generated Images

22



Latent space z

Interpolation in latent space:

Shows that generator has

learned a meaningful representation in a 

lower dimensional space!

Interpolation path visualization

Latent Space Interpolation – Image Parameterisation

𝑧∗ = 𝛽 𝑧𝑠𝑡𝑎𝑟𝑡 + 1 − 𝛽 𝑧𝑒𝑛𝑑 , 𝛽 ∈ [0, 1]



Computational Effort

Main Computation cost training:

Amortizes with number of samples due to low per sample cost / runtime



Image Inpainting (Yeh et al. 2016)

Task: Restore missing details given a corrupted / masked image 𝑴 ∙ ෥𝒙

Use a generative model G(z) to find missing details, conditional to given information.

Contextual Loss:  𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 = 𝝀 𝑴 ∙ 𝑮 𝒛 −𝑴 ∙ ෥𝒙
𝟐

Perceptual Loss:  𝑳𝒑𝒆𝒓𝒄 = 𝒍𝒐𝒈(𝟏 − 𝑫(𝑮 𝒛 )

(Cat, Dog, Leopard, Dachshund)

Credit: Kyle Kastner𝑴 ∙ ෥𝒙 Human Artist              𝑳𝟐 𝑳𝒐𝒔𝒔 𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 +  𝑳𝒑𝒆𝒓𝒄

Optimize loss by modifying 

latent vector z



Conditioning – Pore Scale Example

Conditioning Data

Ground Truth Volume

Stochastic Sample 1

Conditioned to Data

Stochastic Sample 2

Conditioned to Data

Same 2D conditioning data leads to varied realizations in 3D



Conditioning – Reservoir Scale Example

Maules Creek Training Image (Credit G. Mariethoz)

Pre-trained 3D-Generative Adversarial Network

Condition to single well (1D conditioning) from ground truth data:

Single Realization Mean (N=1000) Standard Dev. (N=1000)

No Variance

at Well



GANs for Inverse Problems
Goal: Use GANs as prior for stochastic inversion

Bayes’ Rule
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Stochastic Inversion with GAN priors

Computational Domain

• Prior represented by GAN:

Pre-train on geological models of river channels

~ 5000 training images, synthetic object-based

• GAN maps from latent-space to image space of 

geological models

• GAN outputs 3 channels:

- Facies Probability (0 – Shale, 1- Sand)

- Acoustic p-wave velocity

- Rock density

Example geological model and ground truth model for synthetic simulations 



Discriminator: Wasserstein Critic / Discriminator

Generator Network Architecture

Represent G(z) and D(x) as deep neural networks:

Network Architecture - 2D Convolutional Network

3x128x64

Channel 1

Channel 2

Channel 3



• Recall Bayes’ Rule:

• Perform Gradient Descent on mismatch by changing latent vector z

• Choose random starting latent vectors z(t=0) and minimize mismatch

• Works, but can lead to low diversity. Formalisation -> MALA sampling (Nguyen et al, 2017)

Posterior Sampling Strategy – Gradient Descent

Goal: Find posterior of latent variables controlling GAN

NN - Backpropagation
Step Size

Latent Vector Adjoint-State Method



• Recall Bayes’ Rule:

• Metropolis – Adjusted - Langevin Algorithm

• Perform MALA by gradient descent with annealing step-size and adding noise

• Additional well data included by  cross-entropy term on facies probability or L2-Norm 

for continuous properties.

Posterior Sampling Strategy - MALA

NN - Backpropagation

Adjoint-State MethodWeight-Decay Noise-Perturbation

Step Size

Goal: Find posterior of latent variables controlling GAN



Numerical Results – Stochastic Inversion

• Data Mismatch in Seismic Domain < 5%:

Ground Truth Posterior Sample Data Mismatch

• Perform posterior sampling (N=100) for increasing shot number (     )

Unconditional Prior Two Acoustic Shots Single Vertical Well

• Higher shot number leads to narrower posterior, well matches > 95% accuracy

Devito



Samples – (Seismic) Inversion 

2 Acoustic Sources 27 Acoustic Sources
Ground Truth Example



Conclusions
• GANs can be used as efficient parameterizations of geological models

• Continuous, non-linear and differentiable representations of image distributions

• GANs do not alleviate the need for training images 

• Can be challenging to train and quality control – mode collapse, training instabilities

• GANs can be used to represent a solution space for ill-posed inverse problems when 

combined with a posterior sampling method such as MALA.

Evolution of channels

during sampling process



Thank you! Questions?
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