3D Reconstruction of Porous Media using Generative Adversarial Networks

Authors:

Lukas Mosser

Professor Olivier Dubrule

Professor Martin Blunt

Department of Earth Science and Engineering Royal School of Mines, Imperial College London

Overview

- Motivation
- Generative Adversarial Networks (GAN)
- Reconstruction Metrics
- Application to CT Images of Porous Media
- Discussion
- Conclusions Outlook

Motivation – Digital Rock and Core Analysis

- Physical Representation:
 - Core

Scale

- Core Plugs
- (Micro) CT Scans »Multi-Phase Flow
- FIB-SEM

- **Physical Experiments:**
- RCAL SCAL
- **Numerical Experiments**
- Pore-Network Models
- Direct Simulation

Digital Representation:

- Create 3D synthetic realizations based on Micro-CT Images as input to numerical experiments
- Perform ensemble numerical experiments

Reconstruction Methods

Other Methods: Simulated Annealing, SIS, PGS, Image Quilting

Generative Adversarial Networks

- Consist of two differentiable functions:
 - Generator (G) and Discriminator (D)
 - » Convolutional neural networks
 - Discriminator's goal:
 - » Distinguish real and generated samples
 - Generator's goal:
 - » Samples from latent space
 - Generates stochastic reconstructions
 - » "Fool" discriminator with generated samples
 - Discriminator tries to approximate:

 $\frac{p_{data}(x)}{p_{data}(x) + p_{generated}(x)}$

- Continuously update weights of G and D
- Convergence:

ghts of G and D

$$p_{data}(x) = p_{generated}(x)$$
 (Goodfellow et. al. 2015) 4

Convolutional filter applied to image

Generative Adversarial Neural Networks

Reconstruction Metrics

- Statistical Properties
 - Two-Point Probability Function $S_2(r)$ » Radial Average / Directional

$$S_2(\mathbf{r}) = \mathbf{P}(\mathbf{x} \in P, \mathbf{x} + \mathbf{r} \in P) \text{ for } \mathbf{x}, \mathbf{r} \in \mathbb{R}^d$$

- Chord length l_c
- Minkowski Functionals
 - Porosity ϕ
 - Specific Surface Area S_v
 - Specific Euler Characteristic χ_v
- Single Phase Permeability
 - Stokes Equations

Spherical Beadpack

- Spherical Particles
- Equal Diameters
- Random Packing
- Segmented Training Image
- Image Size:
 - 500^3 voxels
- Training Images:
 - Extract Subdomains (128³):

Original Image

Training Images

Beadpack Dataset

Training Image

Training: 20 hours Generation: 5 seconds Training Images: 128³voxels

Synthetic Image

Beadpack – $S_2(r)$ and Morphological Analysis

- Captures "Hole-Effect"
- Spherical shapes complex to learn from data only

Berea Sandstone Dataset

Training Image

Training: 15 hours Generation: 2 seconds Training Images: 64^3

Synthetic Image

Berea – $S_2(r)$ and Morphological Analysis

Berea - Permeability Evaluation

- Computed permeability
 vs. effective porosity
- Domain size (128³ voxels):
 - 2x TI size (64³voxels)
- Synthetic reconstructions show $k \sim \phi_{eff}$ with:
 - Similar trend
 - Magnitude
- Allows effective property to be estimated for ensemble of stochastic reconstructions

Ketton Dataset

Training Image

Synthetic Image

Discussion

- Method is independent of imaging technique
- Training time is long (10s hours) reconstruction time fast (seconds)
- Very active research topic in ML community
 - Improved GAN formulations more stable and quality estimates
- No direct control over reconstruction metric
 - Requires continuous monitoring of derived properties
- Computational Scaling:
 - Linear in number of voxels
 - Very fast on CPU and GPU
 - Main requirement: Memory

Conclusions and Outlook

- Presented a new method for stochastic image reconstruction based on generative adversarial neural networks (GAN)
- GANs allow computational efficient sampling of large 3D reconstructions
 - Capture two-point statistics, image morphology and permeability
- Outlook: GANs as a tool to bridge scales?

Thank you!

Questions?

Visit our Poster!

Pre-print: arXiv:1704.03225

Code: github.com/LukasMosser/PorousMediaGAN