Imperial College London

Stochastic Simulation with Generative Adversarial Networks

Lukas Mosser, Olivier Dubrule, Martin J. Blunt

lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk

(Deep) Generative Methods

• Task: Draw (new) samples from unknown density given a set of samples

Main Problem: How to find the generative model?

- Generative Adversarial Networks (GAN)
 - Two competing Neural Networks
- Variational Autoencoders (VAE)
 - Bayesian Graphical Model of data distribution
- Autoregression (Pixel-CNN)
 - Conditional Distribution on every sample
- Many More ...

Generative Adversarial Networks – Toy Example

Generative Adversarial Networks – Training

- Requirements:
 - Training Set of data
 - Generator creates samples G(z)

$$\mathbf{z} \sim \mathcal{N}(0,1)^{d \times 1 \times 1 \times 1} \quad G_{\theta} : \mathbf{z} \to \mathbb{R}^{1 \times 64 \times 64 \times 64}$$

• Discriminator – evaluates samples $D_{\omega}: \mathbb{R}^{1 \times 64 \times 64 \times 64} \rightarrow [0, 1]$

• Cost function: $\min_{\theta} \max_{\omega} \{ \mathbb{E}_{\mathbf{x} \sim p_{data}}[log \ D_{\omega}(\mathbf{x})] + \mathbb{E}_{\mathbf{x} \sim p_{\mathbf{z}}}[log \ 1 - D_{\omega}(G_{\theta}(\mathbf{z}))] \}$

- GAN training two step procedure in supervised way
 - Discriminator training step Generator fixed
 - Train on real data samples
 - Train on fake samples
 - Generator training step Discriminator fixed
 - Push generator towards "real" images

Ketton Limestone Dataset and Preprocessing

- Oolitic Limestone
- Intergranular pores
- Intragranular Micro-Porosity
- Ellipsoidal grains
- 99% Calcite
- Image Size:
 - 900^3 voxels @ 26.7 μm

Extract Non-Overlapping Training Images (64³ voxels)

Network Architecture - 3D Convolutional Network

Represent G(z) and D(x) as deep neural networks:

Discriminator: Binary Classification Network -> Real / Fake

Reconstruction Quality – Unconditional Simulation

Ketton Training Image

Intergranular Porosity Moldic Features Micro-Porosity

GAN generated sample

Training Time: 8 hours Generation: 5 sec.

High visual quality Needs quantitative measures

7

Reconstruction Quality Criteria

Statistical Properties

- Two-Point Probability Function $S_2(r)$
 - » Radial Average / Directional

$$S_2(\mathbf{r}) = \mathbf{P}(\mathbf{x} \in P, \mathbf{x} + \mathbf{r} \in P) \ for \ \mathbf{x}, \mathbf{r} \in \mathbb{R}^3$$

Minkowski Functionals

- Porosity ϕ
- Specific Surface Area S_v
- Integral of Mean Curvature
- Specific Euler Characteristic χ_v
- Compute as function of image gray-level
 => Characteristic Curves

Flow Properties: Solve Stokes flow in pore domain

Permeability + Velocity Distributions

$$\nabla \cdot \mathbf{v} = 0$$
$$\mu \nabla^2 \mathbf{v} = \nabla p \qquad \mathbf{8}$$

Ketton Comparison – Directional $S_2(r)$

Ketton Comparison – Permeability

Isotropic Permeability Range of effective (flowing) porosity: Data (0.29- 0.37) GAN (0.31-0.33) Same order of magnitude and $\overline{\overline{k}} - \phi$ relationship

Opening the GAN black box

What does the Generator learn?

Multi-scale Representation of pore space

Smaller Variance in GAN generated samples: Why?

Generator can miss modes of the data distribution -> Mode-Collapse

Latent Space Interpolation

Interpolation in latent space:

Shows that generator has learned a meaningful representation in a lower dimensional space!

Computational Effort

Authors	Method	Size [voxels ³]	Run time $(\times 1)$ (h)
Computational run	time comparison		
Pant (2016)	Simulated annealing	300 ³	22–47
Tahmasebi et al. (2017)	Patch-based	$1000^{2} \times 300$	0.1
Okabe and Blunt (2004)	MPS	150 ³	12
Current work	GAN	450 ³	8

Number of Realizations

Main Computation cost training:

Amortizes with number of samples due to low per sample cost / runtime

Image Inpainting (Yeh et al. 2016)

Task: Restore missing details given a corrupted / masked image $M \cdot \tilde{x}$

Use a generative model G(z) to find missing details, conditional to given information.

Contextual Loss: $L_{content} = \lambda ||M \cdot G(z) - M \cdot \tilde{x}||_2$ **Corresponds to likelihood Perceptual Loss:** $L_{perc} = log(1 - D(G(z))$ **Regularization for prior Stay close to "real" images**

Optimize loss by gradient descent on latent vector z

 $M \cdot \widetilde{x}$

L_{content} + *L_{perc}* Credit: Kyle Kastner

Conditioning – Pore Scale Example

Two-dimensional data at pore-scale more abundant e.g. thin-sections Combine 3D generative model G(z) with 2D conditioning data

Generative Model: Ketton Limestone GAN (Part 1) Mask: Three orthogonal cross-sections, honor 2D data in a 3D image

Contextual Loss: $L_{content} = \lambda ||M \cdot G(z) - M \cdot \tilde{x}||_2$ on orthogonal cross-sections Perceptual Loss: $L_{perc} = log(1 - D(G(z)))$ on whole volumetric generated image G(z)

$$L_{Total} = \lambda L_{content} + L_{perceptual}$$

Optimize Total Loss, by modifying latent vector (GAN parameters fixed) -> Many local minima at error threshold -> stochastic volumes that honor 2D data

Conditioning – Pore Scale Example

Same 2D conditioning data leads to varied realizations in 3D

Conditioning – Reservoir Scale Example

Maules Creek Training Image (Credit G. Mariethoz)

Pre-trained 3D-Generative Adversarial Network

Condition to single well (1D conditioning) from ground truth data:

Conclusions:

Generative Adversarial Networks are:

- Parametric Latent Vector
- Differentiable Allow for optimization
- Learned from training examples

That allow continuous reparametrizations of geological models.

• Can be conditioned to existing grid-block scale data.

Possibly very useful for solving stochastic inverse problems Main Idea: Represent prior with a (deep) generative model

arXiv preprint arXiv:1806.03720

Imperial College London

Thank you!

References

Reconstruction of three-dimensional porous media using generative adversarial neural networks. *Physical Review E*, *96*(4), 043309, Mosser, L., Dubrule, O., & Blunt, M. J. (2017).

Stochastic reconstruction of an oolitic limestone by generative adversarial networks. *Transport in Porous Media*, 1-23, Mosser, L., Dubrule, O., & Blunt, M. J. (2017).

Conditioning of Generative Adversarial Networks for Pore and Reservoir Scale Models, **80th EAGE Conference**, Mosser L., Dubrule, O., & Blunt, M. J. (2018).

Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. *arXiv preprint arXiv:1806.03720*, Mosser, L., Dubrule, O., & Blunt, M. J. (2018).