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● Task: Draw (new) samples from unknown density given a set of samples

● Generative Adversarial Networks (GAN)
○ Two competing Neural Networks

● Variational Autoencoders (VAE)
○ Bayesian Graphical Model of data distribution

● Autoregression (Pixel-CNN)
○ Conditional Distribution on every sample

○ Many More ...

(Deep) Generative Methods
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Main Problem: How to find the generative model?



(Goodfellow et. al. 2014)
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Generative Adversarial Networks – Toy Example
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• Requirements: 

• Training Set of data

• Generator – creates samples G(z)

• Discriminator – evaluates samples

• Cost function: 

• GAN training – two step procedure in supervised way

• Discriminator training step – Generator fixed

• Train on real data samples 

• Train on fake samples

• Generator training step – Discriminator fixed

• Push generator towards “real” images

Generative Adversarial Networks – Training
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• Oolitic Limestone

• Intergranular pores

• Intragranular Micro-Porosity

• Ellipsoidal grains

• 99% Calcite

• Image Size: 

- 𝟗𝟎𝟎^𝟑 voxels @ 26.7 𝝁𝒎

Extract Non-Overlapping 

Training Images (𝟔𝟒𝟑 𝒗𝒐𝒙𝒆𝒍𝒔)

Training Set

Ketton Limestone Dataset and Preprocessing
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Discriminator: Binary Classification Network -> Real / Fake

Generator Network Architecture

Represent G(z) and D(x) as deep neural networks:

Network Architecture - 3D Convolutional Network
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Intergranular Porosity

Moldic Features

Micro-Porosity

Training Time: 8 hours

Generation: 5 sec.

High visual quality

Needs quantitative measures

Reconstruction Quality – Unconditional Simulation

Ketton Training Image GAN generated sample
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Statistical Properties

• Two-Point Probability Function 𝑺𝟐 𝒓

» Radial Average / Directional

Minkowski Functionals 

• Porosity 𝝓

• Specific Surface Area 𝑺𝒗
• Integral of Mean Curvature

• Specific Euler Characteristic 𝝌𝒗
• Compute as function of image gray-level

=> Characteristic Curves

Flow Properties: Solve Stokes flow in pore domain

• Permeability + Velocity Distributions

Reconstruction Quality Criteria
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Isotropic Covariance

Pronounced Oscillations -> “Hole-Effect”

• Captured by GAN model

Smaller Variance of GAN model

Ketton Comparison – Directional 𝑺𝟐 𝒓
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Isotropic Permeability

Range of effective (flowing) porosity: Data (0.29- 0.37) GAN (0.31-0.33)

Same order of magnitude and ന𝒌 − 𝝓 relationship

Ketton Comparison – Permeability 
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Smaller Variance in GAN generated samples: Why?

𝑝𝑑𝑎𝑡𝑎 𝑥
Latent space z

𝑝𝑔𝑒𝑛 𝑥

Generator can miss modes of the data distribution -> Mode-Collapse

What does the Generator learn?

Multi-scale Representation of pore space

Opening the GAN black box
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Latent space z

Interpolation in latent space:

Shows that generator has

learned a meaningful representation in a 

lower dimensional space!

Interpolation path visualization

Latent Space Interpolation

𝑧∗ = 𝛽 𝑧𝑠𝑡𝑎𝑟𝑡 + 1 − 𝛽 𝑧𝑒𝑛𝑑 , 𝛽 ∈ [0, 1]
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Computational Effort

Main Computation cost training:

Amortizes with number of samples due to low per sample cost / runtime
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Image Inpainting (Yeh et al. 2016)

(Cat, Dog, Leopard, Dachshund)

Credit: Kyle Kastner𝑴 ∙ 𝒙 Human Artist              𝑳𝟐 𝑳𝒐𝒔𝒔 𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 +  𝑳𝒑𝒆𝒓𝒄

Optimize loss by gradient descent on latent vector z
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Task: Restore missing details given a corrupted / masked image 𝑴 ∙ 𝒙

Use a generative model G(z) to find missing details, conditional to given information.

Contextual Loss:  𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 = 𝝀 𝑴 ∙ 𝑮 𝒛 −𝑴 ∙ 𝒙
𝟐

Perceptual Loss:  𝑳𝒑𝒆𝒓𝒄 = 𝒍𝒐𝒈(𝟏 − 𝑫(𝑮 𝒛 )

Corresponds to likelihood 

Regularization for prior

Stay close to “real” images 



Conditioning – Pore Scale Example

Two-dimensional data at pore-scale more abundant e.g. thin-sections

Combine 3D generative model G(z) with 2D conditioning data

Generative Model: Ketton Limestone GAN (Part 1)

Mask: Three orthogonal cross-sections, honor 2D data in a 3D image

Contextual Loss:  𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 = 𝝀 𝑴 ∙ 𝑮 𝒛 −𝑴 ∙ 𝒙
𝟐

on orthogonal cross-sections

Perceptual Loss:  𝑳𝒑𝒆𝒓𝒄 = 𝒍𝒐𝒈(𝟏 − 𝑫(𝑮 𝒛 ) on whole volumetric generated image G(z)

Optimize Total Loss, by modifying latent vector (GAN parameters fixed)

-> Many local minima at error threshold -> stochastic volumes that honor 2D data
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𝑳𝑻𝒐𝒕𝒂𝒍 = 𝝀 𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 + 𝑳𝒑𝒆𝒓𝒄𝒆𝒑𝒕𝒖𝒂𝒍



Conditioning – Pore Scale Example

Conditioning Data

Ground Truth Volume

Stochastic Sample 1

Conditioned to Data

Stochastic Sample 2

Conditioned to Data

Same 2D conditioning data leads to varied realizations in 3D
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Conditioning – Reservoir Scale Example

Maules Creek Training Image (Credit G. Mariethoz)

Pre-trained 3D-Generative Adversarial Network

Condition to single well (1D conditioning) from ground truth data:

Single Realization Mean (N=1000) Standard Dev. (N=1000)

No Variance

at Well
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Conclusions:
Generative Adversarial Networks are:

• Parametric – Latent Vector

• Differentiable – Allow for optimization 

• Learned from training examples

That allow continuous reparametrizations of geological models.

• Can be conditioned to existing grid-block scale data.

Possibly very useful for solving stochastic inverse problems

Main Idea: Represent prior with a (deep) generative model
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Unconditional Prior Two Acoustic Shots Single Vertical Well

Ground Truth Posterior Sample

arXiv preprint arXiv:1806.03720



Thank you!
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