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Abstract Conditioning Generative Models MALA - Posterior Sampl

Direct observations of properties of porous media within the earth’s The generator maps any point in the latent space z to the space of im- We perform stochastic inversion < % é %
interior are rare and therefore solving inverse problems is a common ages. Interpolation between points in latent space results in interpo- using the MALA sampling ap- P G |
task in geoscience. Setting inverse problems in a Bayesian frame- lation in the image domain where each intermediate step is a sample proach for a reservoir scale acous- ( %) 3 /Z
work, the aim is to find the posterior distribution of rock properties of the implicit probability distribution defined by the training set. tic wave propagation problem | | - //// //
given observed data. (right). The reflected wave-field —— =5
This work aims to introduce a representation of the prior dis- Latent Space is sparsely sampled by a number Dl

tribution given by a generative adversarial network (GAN). We
show that GANs can be used to address many difficult problems
in the geosciences, including seismic inversion (Mosser et al. 2018),
generation of pore-space images (Mosser et al. 2017), and history
matching in reservoir simulation.

GANs allow sampling from probability distributions that are

of recording devices at the sur-
face. This represents an ill-posed
inverse problem. The generative
network acts as a prior on subsur-
face structures and allows samples Generative Model |
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implicitly defined by a set of example training images. In prac- that match the observed data.
tice, GANs are represented by a pair of deep convolutional neu- “y [, 2 3
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lem at reservoir scale, constrained by the acoustic wave equation to

: . . space of generated porous media samples.
be obtained. Our future work aims to extend this methodology to

Above: Comparison of ground truth recorded acoustic wave-form (a) obtained from solu-

hiStOI'y matching of hydrocarbon reservoir pI‘OdllCtiOIl. The differentiable nature of the deep neural network used to repre- tion of the acoustic wave-equation on a reservoir scale domain with inverted wave-form
sent the generator allows the generator to be used for optimization obtained from MALA-sampling (b). The obtained samples have <10% relative error com-
problems with differentiable loss functions. pared to the observed ground truth data (c).
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Gene rative Adve rSaria I Netwo rkS (GA N) The generated GAN samples can be conditioned to existing data by
minimizing the content loss, represented by the L - norm between
Generative adversarial networks provide a method of sampling from the existing data and the GAN generated output. A mask M ensures .
a probability distribution that is implicitly defined by a large set of that the contextual loss is only accounted for where spatial data is I
training images. Two differentiable functions, a generator G and a available. = T
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The generator creates samples by mapping samples drawn from a tion, the so-called perceptual loss, is given by the discriminator Above: Standard deviation of 100 inverted reservoir models for an increasing number
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nermal _dlStrlbU‘t.ed latent Spa(}e Z t(.) the epace of n.at.ural %mages' The output. The resultlng samples should receive a score D(G(2)) =1. ative model show a high standard deviation. Increasing the number of sources leads to
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Training Set of Images Optimization is performed by sampling and modifying a random
Latent TP PP latent vector z by computing gradients with respect to the contextual H; M h . in | S
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to be considered “real”. . , , )
D(G(2) = 1 Our future work aims to use generative models as geological priors
Generator Latent Space Subspace that matches for reservoir-scale inverse problems such as history matching of hy-
G(2) conditioning data drocarbon reservoir production data.
As a first step we solve a well-posed inverse problem of Darcy flow
¢ at the reservoir scale with Dirichlet boundary conditions:
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The spatial distribution of permeability is sampled from a GAN
generator trained on fluvial river channel systems. Using the ad-
joint-state equation, latent variables are modified to optimize the
mismatch between the observed pressure field and the generat-
ed data by solving Darcy flow using a numerical finite-element
solution on the GAN generated permeability field. The resulting
channel systems closely match the ground truth permeability data.

Discriminator wants to
distinguish “real” from
“fake” images.

Discriminator /' For“real”images: D(x) = 1
D(x) For “fake”images: D(G(z)) =0

Output: Probability to be “real”image.

We train GANs to create stochastic representations of porous media
at the pore-scale. The generator and discriminator are represented
by deep convolutional neural networks. The networks were trained
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Micro-CT | bution of rock properties e.g. the spatial distribution of rock p-wave iteration 1 iteration 50 ~ lteration 500 Ground Truth
Icro mage GAN-Generated Sample Above: Inversion of reservoir permeability is performed for a 2D Darcy flow problem.

VelOCIty O.I‘ permeab1.11ty, sIVen obser.\/ed d,ata', cornblned witha priot The target ground truth permeability distribution on the right is reproduced by inversion
representing our belief of what POSSlble distributions of these quan- using a GAN as a prior model on reservoir permeability. Inversion progress is shown

tities of interest may look like. This is summarized by Baye’ s rule: from the initial starting model (left) until convergence is reached (right).
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To obtain samples from the posterior, we apply a Metropolis-adjust-
ed Langevin algorithm (MALA). The prior is given by a GAN pre-
trained on synthetic river channel systems and dependent only on The differentiable nature of generative adversarial networks and their latent

: S vector representations allows challenging problems in the geosciences to be
Above: The original micro-CT image used as a training set (left) and the GAN the set of latent variables. The observed data is StVeLl by a forward

i ) ) ) addressed such as seismic inversion or pore-space image generation.
generated samples are Visually nearly indistinguishable. Small scale features such as existing simulation on an unseen 8601081(?31 cross-section (bGIOW). . .
. . . GANSs represent a flexible methodology to create functions that allow
micro-porous regions are present in the GAN generated samples. a) b) c)

28 226 sampling from probability distributions defined by a set of training images.
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The resulting samples have
high visual fidelity and show
a diverse set of microstructural
features of the porous medium
seen in the training images. n
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We use synthetic object based reservoir models of a channelized river system to demon-
strate stochastic PDE-based inversion. A GAN was trained to create stochastic samples , .
of reservoir rock properties; reservoir facies (a), rock p-wave velocity (b) rock density (c). reservoir production data.

Future work will expand the presented methodology to ill-posed inverse
problems for flow and transport such as history matching of hydrocarbon
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Each step update to perform MALA requires gradients of the mis-
match with respect to the latent variables z to be obtained:
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