
MALA - Posterior Sampling

Generative Adversarial Networks
as Priors for Inverse Problems

Lukas Mosser
Olivier Dubrule, Martin J. Blunt

Department of Earth Science and Engineering, Imperial College London

Abstract Conditioning Generative Models

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S. & Bengio, Y. (2014). Generative 
adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
Mosser, L., Dubrule, O., & Blunt, M. J. (2017). Reconstruction of three-dimensional porous media using genera-
tive adversarial neural networks. Physical Review E, 96(4), 043309.
Mosser, L., Dubrule, O., & Blunt, M. J. (2017). Stochastic reconstruction of an oolitic limestone by generative 
adversarial networks. Transport in Porous Media, 1-23.
Mosser, L., Dubrule, O., & Blunt, M. J. (2018). Stochastic seismic waveform inversion using generative adversar-
ial networks as a geological prior. arXiv preprint arXiv:1806.03720.

References

• The differentiable nature of generative adversarial networks and their latent 
vector representations allows challenging problems in the geosciences to be 
addressed such as seismic inversion or pore-space image generation.

• GANs represent a flexible methodology to create functions that allow  
sampling from probability distributions defined by a set of training images.

• Using a Metropolis-adjusted Langevin algorithm allows stochastic inversion 
with deep generative networks as a prior on spatial property distributions.

• Future work will expand the presented methodology to ill-posed inverse 
problems for flow and transport such as history matching of hydrocarbon  
reservoir production data.

Conclusions

Generative Adversarial Networks (GAN)

Generative adversarial networks provide a method of sampling from 
a probability distribution that is implicitly defined by a large set of 
training images. Two differentiable functions, a generator G and a 
discriminator D, play a competitive two-player minimax game.

The generator creates samples by mapping samples drawn from a 
normal distributed latent space z to the space of natural images. The 
discriminator tries to maximize his abililty to distinguish samples 
from G and can be seen as a learned loss function.

We train GANs to create stochastic representations of porous media 
at the pore-scale. The generator and discriminator are represented 
by deep convolutional neural networks. The networks were trained 
on micro-CT images of a Ketton Limestone (643 voxels).

Contact

Above: Inversion of reservoir permeability is performed for a 2D Darcy flow problem.  
The target ground truth permeability distribution on the right is reproduced by inversion 
using a GAN as a prior model on reservoir permeability. Inversion progress is shown 
from the initial starting model (left) until convergence is reached (right).

Generator wants samples 
to be considered “real”.

D(G(z)) ≈ 1 

Discriminator wants to 
distinguish “real” from 

“fake” images. 

Output: Probability to be “real” image.

For “real” images: D(x) ≈ 1
For “fake” images: D(G(z)) ≈ 0

The resulting samples have 
high visual fidelity and show 
a diverse set of microstructural 
features of the porous medium 
seen in the training images.
 We evaluate statistical mea-
sures and Minkowski function-
als and compute single phase 
permeabilities to ensure that 
the generated images reflect the 
original porous medium.
                                              .com/LukasMosser/PorousMediaGAN

Above: The original micro-CT image used as a training set (left) and the GAN  
generated samples are visually nearly indistinguishable. Small scale features such as existing  
micro-porous regions are present in the GAN generated samples.

Micro-CT Image GAN-Generated Sample

Intermediate
Representations

Latent Space

Above: We show an example interpolation between two points in the latent space z for 
the GAN trained on the Ketton limestone. A number of intermediate steps along a linear 
path between the start and end points are shown. We observe a smooth interpolation in the 
space of generated porous media samples.

Our future work aims to use generative models as geological priors 
for reservoir-scale inverse problems such as history matching of hy-
drocarbon reservoir production data.
 As a first step we solve a well-posed inverse problem of Darcy flow 
at the reservoir scale with Dirichlet boundary conditions: 

The spatial distribution of permeability is sampled from a GAN 
generator trained on fluvial river channel systems. Using the ad-
joint-state equation, latent variables are modified to optimize the 
mismatch between the observed pressure field and the generat-
ed data by solving Darcy flow using a numerical finite-element 
solution on the GAN generated permeability field. The resulting  
channel systems closely match the ground truth permeability data. 

History Matching in Latent Space

Subspace that matches 
conditioning data

Latent Space

Three orthogonal cross-sections were extracted from a Ketton limestone image (a) and 
used to condition a generative model. The contextual and perceptual losses were opti-
mized by modifying the latent random variables. Starting from different initial random 
latent vectors leads to stochastic samples in the three-dimensional domain (b-c). High-
lighted in red (b-c), two resulting features constrained to the same 2D conditioning data.

Stochastic inversion seeks to obtain samples of the posterior distri-
bution of rock properties e.g. the spatial distribution of rock p-wave 
velocity or permeability, given observed data, combined with a prior 
representing our belief of what possible distributions of these quan-
tities of interest may look like. This is summarized by Baye’s rule:

To obtain samples from the posterior, we apply a Metropolis-adjust-
ed Langevin algorithm (MALA). The prior is given by a GAN pre-
trained on synthetic river channel systems and dependent only on 
the set of latent variables. The observed data is given by a forward 
simulation on an unseen geological cross-section (below).

Each step update to perform MALA requires gradients of the mis-
match with respect to the latent variables z to be obtained:

The deep neural network and forward PDE solver are coupled in a 
computational graph and gradients obtained by applying the ad-
joint state-method.

Stochastic inversion - GANs + PDEs
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We use synthetic object based reservoir models of a channelized river system to demon-
strate stochastic PDE-based inversion. A GAN was trained to create stochastic samples  
of reservoir rock properties; reservoir facies (a), rock p-wave velocity (b) rock density (c).

We perform stochastic inversion 
using the MALA sampling ap-
proach for a reservoir scale acous-
tic wave propagation problem 
(right). The reflected wave-field 
is sparsely sampled by a number 
of recording devices at the sur-
face. This represents an ill-posed 
inverse problem. The generative 
network acts as a prior on subsur-
face structures and allows samples 
from the posterior to be obtained 
that match the observed data.

Above: Comparison of ground truth recorded acoustic wave-form (a) obtained from solu-
tion of the acoustic wave-equation on a reservoir scale domain with inverted wave-form 
obtained from MALA-sampling (b). The obtained samples have < 10% relative error com-
pared to the observed ground truth data (c). 

Above: Standard deviation of 100 inverted reservoir models for an increasing number 
of acoustic sources (red diamonds). 100 unconditional samples obtained from the gener-
ative model show a high standard deviation. Increasing the number of sources leads to 
better resolved geological structures (b, d-f). Inverted samples can also be conditioned to 
well-data (blue circle) where available (c).

The generator maps any point in the latent space z to the space of im-
ages. Interpolation between points in latent space results in interpo-
lation in the image domain where each intermediate step is a sample 
of the implicit probability distribution defined by the training set.

The differentiable nature of the deep neural network used to repre-
sent the generator allows the generator to be used for optimization 
problems with differentiable loss functions.

The generated GAN samples can be conditioned to existing data by  
minimizing the content loss, represented by the L2- norm between 
the existing data and the GAN generated output. A mask M ensures 
that the contextual loss is only accounted for where spatial data is 
available.

Visual and statistical fidelity is ensured by a second objective func-
tion, the so-called perceptual loss, is given by the discriminator  
output. The resulting samples should receive a score D(G(z)) ≈ 1. 

Optimization is performed by sampling and modifying a random 
latent vector z by computing gradients with respect to the contextual 
loss and the perceptual loss by backpropagating through the differ-
entiable discriminator function.

Direct observations of properties of porous media within the earth’s 
interior are rare and therefore solving inverse problems is a common 
task in geoscience. Setting inverse problems in a Bayesian frame-
work, the aim is to find the posterior distribution of rock properties 
given observed data. 
 This work aims to introduce a representation of the prior dis-
tribution given by a generative adversarial network (GAN). We 
show that GANs can be used to address many difficult problems 
in the geosciences, including seismic inversion (Mosser et al. 2018),  
generation of pore-space images (Mosser et al. 2017), and history 
matching in reservoir simulation.
 GANs allow sampling from probability distributions that are 
implicitly defined by a set of example training images. In prac-
tice, GANs are represented by a pair of deep convolutional neu-
ral networks, a generator, and discriminator, which are trained in a  
competitive two-player setting.  
 We show that a Metropolis-adjusted Langevin algorithm (MALA) 
allows stochastic solutions of the ill-posed seismic inversion prob-
lem at reservoir scale, constrained by the acoustic wave equation to 
be obtained. Our future work aims to extend this methodology to 
history matching of hydrocarbon reservoir production.


