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Challenge:

How to quantify variability?

Perform measurements        

Generate 

Representative Images

GANs in practice – Digital Rock and Core Physics

Data Acquisition

Experiments / Imaging

Flow Experiment

Numerical Simulation Validation

ന𝒌

Point Estimates vs Distributions
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Why condition your generative model to data?
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Obtain a high-resolution 3D scan –> condition 3D model to 2D sections

Thin sections more abundant / cheaper -> infer 3D structure
Assists in experimental verification: 

- Keep same inflow geometry but vary 3D structure



Outline
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• Generative Adversarial Networks

• Dataset – Ketton Limestone

• Validation of the Generative Model

• Visual, Statistical and Physical Properties

• Conditioning to GANs to spatial data – pore and reservoir scale

• Where to from here?



(Goodfellow et. al. 2014)

𝑝𝑑𝑎𝑡𝑎 𝑥

Latent space z

Generator (z)
Training Data 𝑥

Discriminator(x)

?

Gradient-based
Feedback

Noise prior

Generative Adversarial Networks – Toy Example
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• Task: Sample from unknown density, given by training samples / images

• Consist of two differentiable functions:

• Generator 𝑮 𝒛 and Discriminator 𝑫 𝒙

• 𝑮 𝒛 and 𝑫 𝒙 𝐫epresented by differentiable parametric (deep) neural networks

• Sample random noise 𝒛 and apply function 𝑮 𝒛 that maps to data domain e.g. images

• Two cost functions - competitive:

• Discriminator 𝑫 𝒙 goal: Distinguish real data from fake samples

• Generator 𝑮 𝒛 goal: Make samples look like data and fool discriminator

• Convergence when discriminator confused therefore:

Allows very fast sampling (GPU optimized) of large 3D images

𝒑𝒅𝒂𝒕𝒂 𝒙 = 𝒑𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅(𝒙)

(Goodfellow et. al. 2014)Generative Adversarial Networks
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• Oolitic Limestone

• Intergranular pores

• Intragranular Micro-Porosity

• Ellipsoidal grains

• 99% Calcite

• Image Size: 

- 𝟗𝟎𝟎^𝟑 voxels @ 26.7 𝝁𝒎

Extract Non-Overlapping 

Training Images (𝟔𝟒𝟑 𝒗𝒐𝒙𝒆𝒍𝒔)

Training Set

Ketton Limestone Dataset and Preprocessing
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Discriminator: Binary Classification Network -> Real / Fake

Generator Network Architecture

Represent 𝑮 𝒛 and 𝑫 𝒙 as deep neural networks:
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Network Architecture – 3D Convolutional Network



Intergranular Porosity
Moldic Features
Micro-Porosity

Training Time: 8 hours
Generation: 5 sec

High visual quality
Needs quantitative measures

Reconstruction Quality – Unconditional Simulation

Ketton Training Image GAN generated sample
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Statistical Properties

• Two-Point Probability Function 𝑺𝟐 𝒓

» Radial Average / Directional

Minkowski Functionals 

• Porosity 𝝓

• Specific Surface Area 𝑺𝒗
• Integral of Mean Curvature

• Specific Euler Characteristic 𝝌𝒗
• Compute as function of image gray-level

=> Characteristic Curves

Flow Properties: Solve Stokes flow in pore domain

• Permeability + Velocity Distributions

Reconstruction Quality Criteria

8



Isotropic Permeability
Range of effective (flowing) porosity: Data (0.29- 0.37) GAN (0.31-0.33)

Same order of magnitude and ന𝒌 − 𝝓 relationship

Ketton Comparison – Permeability 
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Latent space z

Interpolation in latent space:

Shows that generator has
learned a meaningful representation in 
a lower dimensional space!

Interpolation path visualization

Latent Space Interpolation

𝑧∗ = 𝛽 𝑧𝑠𝑡𝑎𝑟𝑡 + 1 − 𝛽 𝑧𝑒𝑛𝑑 , 𝛽 ∈ [0, 1]
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Generative Adversarial Networks are:
• Generative Models 

• Parametric – Latent Vector

• Differentiable – Allow for optimization (next part!)

• Paired – Generator (Sampling) and Discriminator (Evaluation)

They can be:

• Difficult to train – mode collapse and stability

• Difficult to evaluate – image quality and diversity

Once trained and qc’ed:

• Fast sampling

• Good computational scaling – with image size

• Load from Checkpoints  - no need to start from scratch 
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Conditioning of Generative Models
Generative model should incorporate additional information:

e.g. G(z, class) -> Sandstone, Shale, Carbonate

Train one generative model on images

with associated class labels.

Generative model: Latent Vector + Class

Possible to perform smooth inter-class interpolation

E.g. Sand to shale to carbonate facies

This model -> Trained on Imagenet (1000 classes)

Miyato and Koyama 2018

(Cat, Dog, Leopard, Dachshund)
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Conditioning of Generative Models

Individual samples should respect available spatial data:

Pore Scale: Thin Sections, FIB-SEM, Porosity, Rock Type

Reservoir Scale: Logs, Core Facies, Production Data, Seismic
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Gas Chimney
Formation Micro-Imaging



Image Inpainting (Yeh et al. 2016)

Task: Restore missing details given a corrupted / masked image 𝑴 ∙ 𝒙

Use a generative model G(z) to find missing details, conditional to given information.

Contextual Loss:  𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 = 𝝀 𝑴 ∙ 𝑮 𝒛 −𝑴 ∙ 𝒙
𝟐

Perceptual Loss:  𝑳𝒑𝒆𝒓𝒄 = 𝒍𝒐𝒈(𝟏 − 𝑫(𝑮 𝒛 )

(Cat, Dog, Leopard, Dachshund)

Credit: Kyle Kastner

𝑴 ∙ 𝒙 Human Artist              𝑳𝟐 𝑳𝒐𝒔𝒔 𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 +  𝑳𝒑𝒆𝒓𝒄

Optimize loss by modifying 
latent vector z
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Conditioning – Pore Scale Example

Two-dimensional data at pore-scale more abundant e.g. thin-sections

Combine 3D generative model G(z) with 2D conditioning data

Generative Model: Ketton Limestone GAN (Part 1)

Mask: Three orthogonal cross-sections, honor 2D data in a 3D image

Contextual Loss:  𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 = 𝝀 𝑴 ∙ 𝑮 𝒛 −𝑴 ∙ 𝒙
𝟐

on orthogonal cross-sections

Perceptual Loss:  𝑳𝒑𝒆𝒓𝒄 = 𝒍𝒐𝒈(𝟏 − 𝑫(𝑮 𝒛 ) on whole volumetric generated image G(z)

Optimize Total Loss, by modifying latent vector (GAN parameters fixed)

-> Many local minima at error threshold -> stochastic volumes that honor 2D data
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𝑳𝑻𝒐𝒕𝒂𝒍 = 𝝀 𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 + 𝑳𝒑𝒆𝒓𝒄𝒆𝒑𝒕𝒖𝒂𝒍



Traverse latent space by gradient-descent

Conditioning Generative Networks
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Subspace of all images that match the data

Latent space z

Space of all valid unconditional images

𝑳𝑻𝒐𝒕𝒂𝒍 = 𝝀 𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕 + 𝑳𝒑𝒆𝒓𝒄𝒆𝒑𝒕𝒖𝒂𝒍

Start from many random starting locations
- > stochastic conditioned samples



Conditioning – Pore Scale Example

Conditioning Data

Ground Truth Volume

Stochastic Sample 1

Conditioned to Data
Stochastic Sample 2

Conditioned to Data

Same 2D conditioning data leads to diverse realizations in 3D
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Conditioning – Reservoir Scale Example

Maules Creek Training Image (Credit G. Mariethoz)

Pre-trained 3D-Generative Adversarial Network

Condition to single well (1D conditioning) from ground truth data:

Single Realization Mean (N=1000) Standard Dev. (N=1000)

No Variance
at Well
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𝑧

𝐷 𝑌 [0, 1]

Differentiable Forward Model

𝐹 𝑋 = 𝑌

Latent Vector
+

Generative Model

𝐺 𝑧 = 𝑋

Differentiable Geological Prior + Forward Operator

GANs: A game changer for modeling and inversion?
Summary:

• Stochastic Modeling using GANs at Pore and Reservoir Scale

• GANs provide flexible framework for conditioning to existing data – label and spatial data

Many inverse problems could benefit from this:

• Reservoir Scale: Permeability derived from production data

• Seismic imaging: Acoustic/elastic properties from seismic data -> ArXiv Preprint

Acoustic Velocity



Thank You!
Questions?

Code on                  https://github.com/LukasMosser/geogan

lukas.mosser15@imperial.ac.uk


